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A method is described for calculating the interaction between an imploding liner, a 
magnetically confined charged-particle ring (Astron e-layer, ion ring) and a target plasma, 
based on the equations of the equivalent circuit. Expressing the electrodynamical behavior 
in terms of inductive coupling between circular current loops, so that changes in geometry 
and plasma parameters are described by changes in the induction coefficients, means that 
only ordinary differential equations arise, in contrast with fluid descriptions. Induced 
electron currents are conveniently included in the model. Application to a beam-target 
fusion system driven by the compression of an ion ring is described as an illustration of the 
utility of the technique. 

I. INTRODUCTION 

Over the last several years a great deal of interest has arisen in connection with the 
topic of gyrating intense ion beams [l-3]. A ring or cylindrical current layer is produced 
by the motion of the ions in the superposed background (quasi-uniform) magnetic 
field and the poloidal self-field, with ring major radius R equal to the ion gyroradius. 
If the net current in such a configuration is strong enough, the direction of the field 
lines within the ring can be opposite that of the background field (Fig. 1). When the 
poloidal field on axis, B, = tq,l/2R, exceeds the background field B, , the field in the 
interior region is completely reversed. 

The system is assumed to be axisymmetric and to consist of fixed rigid conductors, 
deformable free conductors, and a ring composed of several species of charged 
particles. (The minor cross section of this ring need not be circular.) All these elements 
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Q- ION RING 

FIG. 1. Schematic of a fixed driver coil and moving liner and ion-beam plasma ring, all having 
finite length and roughly satisfying the large-aspect-ratio approximation. 

carry current in the azimuthal direction and can have finite resistivity. They interact 
through J x B forces (that is, via Ampere’s law). Displacement currents, hence all 
capacitances and effects propagating with speed c, are ignored. This is valid since the 
macroscopic motion of the currents is far too slow to produce significant electro- 
magnetic radiation. 

We drop the inertial terms from the particle equations of motion. Formally, the 
justification for this results from averaging the equations of motion for thejth particle 
species over a time long compared with the gyroperiod @’ and short compared 
with the time scale for macroscopic motion, T = R/k The relative contribution 
from the inertial term left after this average is of order (szj7)-l, typically much less 
than 1O-s for field strengths 210 T. 

If a large number of current loops are used to represent the distribution of the 
current carried by the plasma and metal conductors in the system, this description 
is equivalent to a Lagrangian MHD code in r--z coordinates. In most physical 
situations the dynamics of the plasma motion is of primary importance. However, 
for a certain class of problems, such as the transport and compression of charged- 
particle rings and imploding liner dynamics, the current-carrying elements move 
and deform markedly. These macroscopic motions are now the focus of our interest, 
and the details of the plasma processes become a distracting complication. Hence 
there is an advantage in seeking as simple as possible a representation of the plasma 
subsystem, even at the cost of some accuracy, provided the interaction between 
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plasma and metal conductors is well approximated. As will become clear, this reduces 
the problem to that of finding good approximations for the self- and mutual induc- 
tances associated with the various current loops. 

Plasma collisions and transport are folded in by assuming a simple geometrical 
‘form (e.g., a thin e-layer, uniform-density proton ring, toroidal Bennett pinch, etc.) 
with a few time-dependent parameters in order to model self-consistent changes in 
the resistivity, transverse dimensions, loop forces, etc. A sufficient condition for such 
a model to succeed is that time scales associated with transport (e.g., thermal conduc- 
tion time, particle diffusion time) be long compared with 7. This criterion is probably 
overly stringent, however-,-as such processes need not produce commensurate changes 
in the inductances. 

The present paper describes a code developed for treating the dynamics of a 
gyrating ion ring interacting with a background plasma and a (possibly imploding) 
metal liner. The code is called IPICAC (for ion-beam-plasma interaction with 
cylindrical adiabatic compression). It is two dimensional (in I, z) and assumes axi- 
symmetry, but does not employ finite differences on a two-dimensional grid to solve 
the dynamical problem. Instead, each portion of the system which carries current is 
regarded as part of a circular current loop. The beam is one such loop; the liner or 
wall may be approximated by several loops side by side. These current loops are 
coupled by their mutual inductances, and the dynamical behavior is determined 
through solution of the circuit equations. Thus the system is described by ordinary 
differential equations, rather than the partial differential equations of the usual 
magnetohydrodynamic treatment. 

The principal difficulty in this approach lies in determining the inductances. These 
change as the geometry of the beam and liner changes, and have to be recalculated 
at every time step. Unless some approximation is invoked to simplify them, no 
computational advantage results from the circuit theory technique. Fortunately, 
such an approximation is available in many charged-particle ring configurations of 
interest, namely, that of large aspect ratio. That is, the major radius Rj of the jth 
current loop is taken to be large compared with its minor dimension and the separation 
in the r-z plane between it and any other loop. It is not necessary but is often conve- 
nient to assume that resistance and current are distributed uniformly throughout the 
r-z cross section of the loop. The latter may be of arbitrary shape, but is usually 
taken to be circular or rectangular. 

In this conception, collisions between the ion beam and background plasma enter 
as a resistance (if more than one charge state is present, there can also be an Ohkawa 
current [4]). Plasma energy losses by radiation and convection also affect the beam 
dynamics through the inductances and the resistance. Consistent with this approach, 
the inertia of the various particle species is retained only in the centrifugal force, so 
that the beam and plasma remain in force balance with the wall currents. 

The code described here was originally [l, 51 developed for an ion-beam-plasma 
interaction problem. We started with a ring of deuterium (D) ions, assuming an 
already existing field-reversed geometry. The ring was compressed by implosion of 
the liner, and the thermonuclear energy production arising from collisions between 
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the beam ions and T or He3 target ions in the background plasma was studied. An 
attempt was made to balance the components of the system so that the collisional 
slowing-down of the beam ions just canceled their tendency to speed up because of 
angular-momentum conservation. “Clamping” the beam in this way at the energy 
for which the beam-target reaction rate peaks (~150 keV for D-T reactions) 
maximizes (2, the ratio of the yield to the sum of liner and plasma energy. It was 
found, however, that even with optimized parameters, Q was limited to 10 % or less. 
The reason was that the energy given up by beam ions in collisions, most of which 
went into electron heating, caused expansion of the toroidal beam-plasma system 
in minor radius and reduced all of the number densities; and accordingly reduced 
the beam-target reaction rate. Presumably Q would increase if a method were 
found to cool the electrons and recycle their thermal energy. 

Some results from this work will be displayed for purposes of illustration, but the 
method is much more general in applicability. Instead of assuming a preexisting 
state of field reversal, one can employ the code to study its origin and development 
in time. This problem will not, however, be addressed in the present paper, which is 
devoted to describing the code and some of the techniques employed in its implemen- 
tation. The plan of the paper is as follows. In Section II we derive the equations of the 
circuit theory model of the beam-plasma-liner dynamical system. In Section III we 
discuss isentropic (lossless) compression of an ion ring and the role of the induced 
electron current in the resultant scaling. Collisions are described in Section IV. The 
implementation of conduction, particle transport processes, and other phenomena is 
discussed in Section V, and an example is described in Section VI. Our results are 
summarized in Section VII. 

II. LINER MOTION AND EQUIVALENT CIRCUIT EQUATIONS 

It is natural to represent the ion beam (and the currents carried by the electrons and 
target ion) as a current loop. It is equally convenient, though perhaps less natural, 
to represent the axial current profile on the liner (and possibly on the driver coil) 
as a superposition of coaxial current loops. Each such loop constitutes an electrical 
circuit individually coupled to each of the others, and contains a self-inductance and 
a resistance (arising from charged-particle encounters in the case of the ring). The 
circuit elements vary in time as the geometry changes. 

Thus it is possible to calculate the implosion dynamics to any desired degree of 
realism entirely by means of the equivalent circuit equations. This representation is, 
in fact, a type of “finite-element” simulation. The minimum number of such circuits 
required to describe electromagnetic implosions of the liner is one each for the driver, 
liner and ring. In this limit the equivalent circuit is that shown in Fig. 2. 

The circuit equations take the form 

d’j - -9.1, -- 
dt 3 3 (1) 
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EQUIVALENT CIRCUIT 

FIG. 2. Electrical circuit equivalent to Fig. 1. A homopolar generator is used to energize the 
driving coil. 

where j runs over all current-carying loops in the system. For the circuit of Fig. 2, 
j = d, I, r (signifying driver, liner, and ring, respectively). The flux threading the 
jth element is 

@p, = C &jkIk > 
k 

(2) 

where Aj, is the inductance coupling circuits j and k, and Wi is the resistance of the 
jth circuit. Equation (1) describes the evolution of CD9 . Given a knowledge of the 
fluxes Qj and the induction coefficients Ajk, Eq. (2) then can be solved for the Ij 
by matrix inversion. 

If the driver is static and energized only during the outermost portion of the cycle 
we can make an additional simplification by restricting our attention to times when 
the liner and ring are far removed from the driver coil. Then j, k take on only the 
values Z, r, and there are just two each of Eqs. (1) and (2). The numerical results 
described and plotted below were obtained using this two-loop circuit. It should be 
clear, however, that most of the discussion which follows is independent of the number 
of loops employed. We have experienced no difficulty in implementing versions of the 
code where as many as ten loops are employed to simulate the current profile in the 
liner. It appears that is would be easy to generalize the method to multiple ion rings 
or single rings with multiple constituent current filaments. 

The coefficients A%‘~~ are very easily calculated. Since the ring deforms freely, it 
tends to evolve so as to maximize its self-inductance, that is, toward a circular minor 
cross section. Moreover, one wants to consider configurations where ring and liner 
are close together, to minimize the volume filled with magnetic energy. Thus all 
distances separating current-carrying filaments are small compared with the major 
radii R, Rt (Fig. 1). In this limit the self- and mutual inductances can be calculated 
in the large-aspect-ratio approximation as 

9, A? N poR[ln(8R) - 2 - In 41, (3) 
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where the average is over the current-carrying part of the cross section, and the minor 
diameter D satisfies D < R. 

Using (3) we find that the self-inductance of the ring is given by 

6p, = A,,. = p,,R[ln(8R/r) - 2 + S], (4) 

where r is the ring minor radius, and S depends on the details of the assumed current 
profile. For example, if all the current is carried in a skin located at the minor radius, 
S = 0; if the current is uniformly distributed, S = 0.25; and if the ring looks like a 
Bennett pinch in cross section, S = 0.5. Similarly, the self-inductance of a liner 
segment is approximately (assuming the current is carried on the inner surface) 

LG$ = A11 N p0Rl[ln(8R/1) - +] (5) 

where I is the length of the segment, assumed much larger than the thickness, and Rl 
is the inside radius; and 

8(RR,)1/2 
&lr = h(RRz)1’2 lln [ [(R _ Rz)2 + (9)231/2 ] - ’ 

-KRz - R)/(U)1 ~n-lK!dN(Rz - RN>. (6) 

More important than the exact forms of (5) and (6) (which depend on the cross sec- 
tions assumed to describe the liner) is the fundamental geometrical requirement 
.L+%‘:~ < 9zz, with equality holding only if R = R1 . Since Eqs. (4)-(6) are approxi- 
mate, this inequality must be enforced by means of an explicit interpolation; otherwise, 
the ring can pass right through the liner. The interpolation formula actually used is 

AZT = AZ, + p3z)1’2 - ~zrlU + [MC - RY~1*~, (7) 

where J? is the corrected value of the mutual inductance. The dynamical results are 
not very sensitive to the choice ofp, which was taken to be 10 in the numerical calcula- 
tion. 

As is well known from electromagnetic theory, the force tending to change any 
coordinate 0 on which an inductive coefficient djk depends is given by 

Employing (8) consistently with the definitions used for JZIjfc guarantees conservation 
of total energy, the magnetic portion of which is 

Thus in carrying out numerical calculations, we determine the total force of the ring 
acting on the liner according to 

Fz = --I,C1;$, 
j 1 (‘0) 
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where the summation runs over the ring and all segments of the liner; the same 
expression with opposite sign yields the force with which the liner tends to hold the 
ring in place. The liner equation of motion is thus 

where Ml is the liner mass. 
Similarly, the electromagnetic force acting to constrict the ring is given by Eq. (8) 

with 0 = r: 

Fr = -I,cII+ 
i 

(12) 

Most of the force Fv comes from the term containing A!,.,. 3 LYT . Because of the use 
of the interpolation formula, Eq. (7), however, there is a small contribution from the 
liner-ring mutual inductance. 

III. ISENTROPIC COMPRESSION 

It is possible to develop scaling laws in terms of which the liner motion and beam 
and plasma evolution are described by analytic expressions, provided we assume the 
absence of both fusion reactions and loss mechanisms. This model is not a useful 
starting point about which to perturb to describe a realistic reactor design, because 
the latter is quite sensitive to beam slowing and the heating resulting from production 
of charged fusion reaction products. It is, however, valuable in describing the dynamics 
in the absence of a target plasma, as well as guiding us in developing an intuition 
about the interdependence of various parts of the system. 

If the liner is represented by JZ distinct current-carrying segments, there are Jl + 1 
fluxes and Jl + 11 physical variables. In our numerical calculations we usually took 
Jt = 1. For this case the 12 physical quantities used to describe a dynamical state of 
the system are the fluxes & and CD, linking the liner and ring, respectively; R and Rt ; 
the ring minor radius r; the total numbers of beam and target ions, iVB and NT, 
respectively; the beam, target, and electron temperatures, TB , TT , and T, , respec- 
tively; and the mean azimuthal ion drift velocities U, and r+ . To proceed, we write 
down all the conservation laws that are available. The conserved quantities are the 
magnetic flux threading the jth liner segment 

@j = C AjlIl + Jkk~j = @j”, (13) 
2 

and that threading the ring, 

(14) 



278 BOOK ET AL. 

the specific angular momentum of beam ions, 

and of target ions, 
Rv, = R% o BY 

RvT = R% aa TY 

the total ion numbers for each species 

Ns = NBo, (17) 

NT = NT’; WI 

(15) 

(16) 

and the beam, target, and electron entropy functions: 

TJjP1 = TJy P)v--l, (19) 

V,P-l = TTyP)y--I, cw 

T,P1 = Teo(Vo)'-1. (21) 

Here I/ = 27r2Rr2 is the volume of the beam/plasma ring. Superscripts (O) indicate 
an initial or a reference state of the system (e.g., the state of maximum compression). 
To these equations must be added the condition of force balance on the ring in the 
direction of major and minor radius, 

(22) 

and 

(23) 

respectively. Here p = k(NBTB + NTTT + NeTe)F1 is the internal pressure in the 
ring (k is the Boltzmann constant), and the electron number is obtained from the 
condition of charge neutrality, 

Ne = N&G + NT~T, (24) 

where Z, is the charge state of ion species LX. The last two terms in Eq. (22) are the 
centrifugal force terms derived from the circulation of the respective species; that 
corresponding to the target ions is usually negligible. 

Equations (22) and (23) have been derived assuming that the ring inertia is negli- 
gible, i.e., that the ring repositions itself instantaneously in response to any change in 
the position of the liner. In addition, the electron mass has been set to zero systemati- 
cally, as negligible in comparison with those of the ions. The ring current I,. satisfies 

I, = 1, + IT + 1, , (25) 
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where 

and 

(26) 

Equations (l), (1 l), and (13)-(23) contribute a set of 12 + J, fundamental algebraic 
equations in terms of the 12 + .ZI physical quantities defining the state. [All the others 
are expressible in terms of these through Eqs. (2), (4)-(6), and (24)-(28).] Thus, 
specifying the state variables determines the evolution of the system completely. We 
rewrite the liner force equation as 

x [ln(Rl”/R12)]-’ (29) 

which parametrizes the dynamical history in terms of t. Equation (29) is derived by 
assuming conservation of the liner mass Ml = 27rpL(Ri2 - R12); p is the (uniform) 
liner density, L is the overall length, and R’, is the outer liner radius. 

Let us assume now that the electron current tending to neutralize ZB is zero. Then 
by conservation of angular momentum, 

Z, = &(NBuB + NTvT) = &(N&B -I- NTRvT)-R-~- (30) 

The minor radius force balance condition (23) reduces to 

p = & RZT2 - - r-2R-4. 
4 v (31) 

Equations (19)-(21), weighted by the respective total numbers Ni , sum to the adiabatic 
law 

pVy = const. (32) 

Taking y = 5/3 and combining (31) and (32) yields 

r N R7/4. (33) 

Hence the number densities for species 01 (a = B, T, e), nar = N,/V, satisfy 

n, N V-1 N R-912, (34) 
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and the poloidal field near the ring B, = ~J,/Zr satisfies 

BP2wp . N R-1512 (35) 

We thus have a situation in which almost three-dimensional compression of the ring 
occurs as R N Rl is reduced. The poloidal field (35) rises almost as the inverse fourth 
power of R and the temperatures scale like T N R-3. 

At the other extreme, the motion of the liner may be such as to induce electron 
currents 1, totally neutralizing the change in ion current, 

I, M const. 

Going through the same steps as above, we find 

r N R-514 

and hence 
n, N V-1 N R3/2 

and 
BD2 “p N R5J2. 

(36) 

(37) 

(38) 

(39) 

In this limit the beam/plasma system decompresses during implosion, with n, p, and 
B, decreasing. 

The actual result obtained by numerical solution of the equations naturally lies 
between these two extremes. The ring is always observed to compress, but at a rate 
slower than that given by Eqs. (34) and (35), and the scaling is not a power law in R, 
If 1, = 0 initially, the behavior tends to resemble the second model increasingly as 
turnaround is approached. The dependence of the degree of field reversal on the 
magnitude of the electron current induced during compression [3] explains why 
attempts to derive a scaling law for this parameter [3, 61 do not appear to yield a 
simple result. There is, in fact, no clear-cut way to predict the scaling without speci- 
fying the geometry of the compression. 

Iv. COLLISIONS 

The electron thermal spread is assumed to be much larger than the thermal spread 
of either ion distribution or the relative drift between any two species. The average 
momentum transfer rate resulting from a collision between particles of species 01 and j? 
is given by [9] 

i 1 y& 
mcx dt 4 = -vi”mBm,(v, - va), 

where 
BIT 

v, = 
4rzB2zT2&(1 + mB/mT) nT In (1 . 

m 2v3 9 
B BT 

ail! 4(21~)l” Za2e4( 1 + ma/m,) m3,‘2ne In n v, =- 
3 m,2(kT,)312 9 

(41) 

(42) 
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01 = B, T, and, from conservation of momentum, 

n,m,#’ = BIa vw, . (43) 

Here In d is the form of the usual Coulomb logarithm appropriate to the species pair 
01, B, and vEB = I ZJ, - us I. Correspondingly, the average temperature rate of change 
resulting from a collision is 

87r ZB2ZT2e4 n7 In n 

87r ZB2ZT2e4 nB In (1 

for ion-ion encounters, and 

8(2~)l’~ Za2e4mt’2ne In (I 
m,(kTe)“J2 we - TJ, 

(9 

(45) 

(46) 

OL = B, T, for ion-electron encounters, with the remaining rates (dT,/dt), defined so as 
to satisfy conservation of energy. 

Consideration of the magnitudes of these rate formulas reveals the following general 
features: (i) both electron and target ions contribute significantly to the rate at which 
beam ions slow down; (ii) the relative velocity with which beam ions move with 
respect to the target ions is chiefly affected by B-T collisions, because electron collisions 
act in the same sense (as a drag) on both ion species; (iii) thermalization of the beam 
also results principally from collisions with target ions. 

On the basis of these generalizations, we can estimate the relative slowing down of 
beam and target ions through collisions as 

$ (0~ - v&y,11 = -(vf” - v:‘B)(vB - VT) 

= -v,(uB - VT). 
(47) 

For the usual case where the target ion mass density substantially exceeds that of the 
beam, nrmT > nBmB , Eq. (47) implies 

v, N LpT. 

At the same time, the adiabatic compression produced by the imploding liner tends 
to cause both ion species to accelerate in the azimuthal direction according to 

Taking the difference between the beam and target equation (49) yields 

$ (vi3 - uT)adial, = - $ (% - UT). 

(49) 
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Equations (47) and (50) give for the net time rate of change of the relative velocity 

(51) 

The condition that this relative velocity be a constant is thus 

l&/R, = -vs. (52) 

When Eq. (52) is satisfied, the beam is said to be clumped [8]. With a tritium target 
there is an advantage in clamping the beam at a relative energy E = ~m,v&- - 150 keV 
which maximizes the reaction rate for D-T fusion. 

Clamping is, of course, accompanied by a monotonic increase in thermal energy 
according to Eqs. (44) and 45). The ion thermal energy density w& = $k(nBTB + n,T,) 
increases as a result of ion-ion collisions at a rate 

dwf,, 47rZB2ZT2e4nBnT In (1 1 - = 
dt UBT 

-+q 
mB mT 

= BIT vs nBmBviT . 

Using (48), we see by comparison of (52) and (53) that the time scale for implosions of 
the liner is comparable to that for heating up the ion beams. The electron heating 
rate can be even faster. 

Note that if v, were approximately constant, the clamping condition (52) would 
imply an exponential decrease in Rz with time. As this is not realizable, clamping 
evidently cannot be maintained close to turnaround. 

In differencing the equations in the code, we found it convenient to use as dependent 
variables quantities that are approximately conserved. Thus instead of T, we used the 
entropy functions [Eqs. (19)-(21)], which now satisfy equations of the form 

& (TaT1) = P-c tp(T6 - T,), 
5 

(54) 

where the v;‘~ are defined as the rates in Eqs. (44)-(46). Similarly, the slowing-down 
rates enter as 

-$ (Rv,) = R c @&I - Vu). 
5 

V. OTHER DISSIPATIVE PROCESSES 

Collisions, discussed in Section IV, can transform directed energy into thermal 
energy. Although essential for clamping, they may be deleterious if they (i) increase 
the ratio of beam ion gyroradius to ring thickness excessively, (ii) cause too much of 



FINITE-CIRCUIT-ELEMENT CODE 283 

the liner energy to go into pumping up the target plasma, or (iii) lead to premature 
loss of confinement as a result of decrease of beam current below that needed for 
field reversal. In addition, the following loss processes can remove energy from the 
system entirely: radiation, heat conduction along field lines, particle diffusion across 
lines, charge exchange with impurities, and Ohmic heating within the liner. The last 
of these can have a second, more serious consequence: finite resistivity gives rise to 
diffusion of field lines through the liner, untrapping the magnetic flux which holds 
the ring at a safe distance from the liner. 

Radiation processes are modeled by adding loss terms to expression (55) for the 
time rate of change of the electron entropy function. For bremsstrahlung and 
synchrotron (cyclotron) radiation we have the terms 

$ (vY-lTe)j)r = -v+[5.35 x 10-2”(& + NrZ,2) T:‘2] (56) 

and 

- Vy-j3.98 x lo-16 m] 
1-B” 

where T is given in eV, p = gkT,lm,c2 and B, = poI,./2r. In the spirit of the circuit- 
theoretical approach (wherein the ring is a macroscopic circuit element with certain 
lumped parameters derived from microscopic processes), the radiation rates are 
calculated by averaging the field strength over the ring cross section. 

In the same fashion, thermal conduction losses can be treated by writing 

= - V+-14nRKbT, , (58) 

where K, is the average cross-field thermal conduction of species CL (The fastest 
thermal loss process is that associated with the target ions, 01= T.) Furthermore, 
thermal equilibration, ol-particle heating, etc., can be included in an average sense 
in the same form. 

Finally, particle losses can be estimated simply by assuming smeared-out density 
profiles according to some law like the Bennett pinch. If a given profile extends past 
the position of the separatrix, located at average minor radius r = rs , that portion 
of the particles located at r > rs is lost. A simple calculation then gives the loss rate 
as the rate at which particles “fall over the edge.” Thus we find 

dN ( 1 -$- 
Gr2 

diff 
= - r,2 v,“N, , 

where G is a geometrical factor (equal to 12 for a Bennett profile) which decreases as 
the assumed profile becomes more localized, and z),” is the total scattering rate for 
species 01. 
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VI. A NUMERICAL EXAMPLE 

The equations and solution techniques described in Sections II-V have been imple- 
mented in a computer code called IPICAC. The code advances the solution in time 
from one level to the next (at t and t + St, respectively) by solving ordinary differen- 
tial equations for the state variables, via the following sequence of steps: 

(i) A Newton-Raphson routine is used to solve for r and R iteratively by 
requiring force balance in the charged-particle ring [Eqs. (22) and (23)]. At each 
iteration the derivatives with respect to Y and R are found by means of difference 
approximations {i.e., al;/& m [F(r + Sr, r) - F(r - 6r, R)]/2&, etc.} 

(ii) From knowledge of r and R, the inductive coefficients are found. Ion 
drift velocities are found from vi = (Ro)JR, densities from nj = Ni/(2n2Rr2), and 
electron drift velocity from Eqs. (24)-(28). 

(iii) The force on the liner elements is calculated from Eq. (8). 

(iv) From Tj Vy-l and V = 2n2Rr2, Ti is calculated. Tj and uj are used to 
obtain the effects of collisional resistivity on the linked magnetic flux and the drift 
velocities, and of thermal diffusion and equipartition on the temperatures. 

(v) Radiation and particle-loss rates are found from Eqs. (56)-(59). Thermo- 
nuclear reaction rates, particle injection rates, etc., are computed, as appropriate. 

(vi) The results of steps (i+(v) are used to calculate the time derivatives of all 
the dependent (state) variables. The time step St is chosen sufficiently small that the 
iterative routine in (i) converges. (This is the most stringent condition and the only 
one in practice which must be observed.) 

Initialization is carried out using the same equations, but solving them in a different 
order. The dimensions of the liner and ring are specified, along with the fluxes linking 
the liner and the ring, the beam energy, all particle temperatures, the poloidal field 
strength B, , the fraction of current neutralization by electrons, and the relative 
concentration and drift velocities of the various ion species. These are sufficient to 
specify the state variables. The same quantities are dumped out at intervals and used 
to restart the calculation as required and are printed as diagnostics. 

We consider the following situation. A liquid lithium liner (density p = 0.54 g/cm3) 
of length L = 13.5 cm and inner and outer radii 31.59 cm and 48.43 cm, respectively, 
implodes with velocity 3 x lo4 cm/s on a fully ionized D-He3 ring with major and 
minor radii of 30 cm and 0.758 cm, respectively. The initial target ion number densities 
are nHe3 = 2nD = 3.59 x 1016 cm-3. The temperatures are TD = 23.7 keV, THe3 = 1 keV, 
and T, = 10 keV. The deuterium current is 1.52 MA, twice the electron back current. 
These numbers are chosen to give a beam ion streaming energy of 550 keV and a 
poloidal field of 200 kG, with beam clamping. Since the emphasis was on determining 
Q, only the part of the evolution in the vicinity of liner turnaround was considered, 
and the early-time conditions giving rise to these parameters were not investigated. 



FINITE-CIRCUIT-ELEMENT CODE 285 

I I I I I 

0 I I I I I 
.2 .4 

TIME (i!SECb 
.o 1.0 

FIG. 3. Ring and liner radii versus t for the given initial conditions. 

FIG. 4. Ring minor radius versus f. 
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TlME(MSEC)- 

FIG. 5. Beam number density versus t. 

FIG, 6. Poloidal magnetic field versus t. 
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RG. 7. Magnetic energy [from Eq. (9)], liner kinetic energy, ion streaming energy, and total 
particle thermal energy versus t. 
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FIG. 8. Beam, target ion, and electron temperatures versus t. 

Figure 3 shows how the beam and liner radii change in time. Note that the separa- 
tion increases, a reflection of the increase in beam minor radius (Fig. 4). Correspon- 
dingly, the number densities (Fig. 5) drop, level off as collisional heating and com- 
pression come into balance, then drop again in the expansion (decompression) stage, 
and the poloidal field (Fig. 6) decreases, increases, then decreases monotonically 

581/33/2-10 
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after turnaround. The various forms of energy (magnetic, liner kinetic, ion directed, 
and thermal) are plotted in Fig. 7, along with the fusion yield. Figure 8 shows how 
the component temperatures increase near turnaround, the evident irreversibility 
being a consequence of collisions. 

Running time on the calculation using an IBM 360/168 was 91 s, of which about 
one quarter was required for diagnostics. Using ten current loops to represent the 
liner current profile approximately doubles the running time, since roughly twice as 
many differential equations have to be solved. It turns out to be convenient in writing 
the code to make extensive use of nested sequences of statement functions in redeter- 
mining force balance on each time step, and most of the running time is expended in 
this task. The number of terms in the flux equation (2) and in the force equation (8) 
goes as J& (Jtot = J1 + 1 is the present instance) is the total number of current loops. 
For the examples cited, matrix inversion of Eq. (2) and evaluation of Eq. (8) do not 
contribute substantially to the running time. An operation count shows that this 
will continue to be the case until Jt,,t N 50. For &t much larger than this, the penalty 
for using pairwise forces (instead of solving for the potentials) becomes prohibitive, 
thus imposing a limitation in principle on the method. As noted in the Introduction, 
however, the use of large numbers of simulation loops runs counter to the philosophy 
on which this method is based. 

A variety of prescriptions are possible for defining the initial conditions. The main 
thing is to ensure that they be neither overdetermined nor underdetermined. When 
working with multiple liner current loops, we arbitrarily imposed the condition that 
the ffux threading all the loops be the same. Though straightforward, this is unlikely 
to be a good approximation in the late stages of the implosion if finite resistivity is 
modeled. 

VII. CONCLUSIONS 

We have presented a new numerical technique for solving problems involving the 
dynamics of charged-particle rings. Its principle advantage is that it is couched in 
circuit-theoretical terms, obviating the need for solution of partial differential equa- 
tions. Because of its adaptation to the physics and geometry of such problems, the 
method can be implemented with only a small number (-10) of current-carrying 
elements. In effect, it replaces the uniform or quasi-uniform mesh of the standard 
two-dimensional finite-difference technique with a highly nonuniform “mesh” of 
circuit elements, located optimally to reflect the relevant physics. 

The code has been applied to calculations of the thermonuclear yield and other 
characteristics of a beam-target fusion device. The particular concept for which the 
code was originally developed turns out to be disappointing in terms of its efficiency 
as a reactor (the example of Section VI yielded Q M 3.2 %), and also appears to be 
unstable to kink modes [9]; however it may have nonfusion applications. It is clear 
that the code can be applied to a variety of axisymmetric situations involving field 
reversal and changes of system geometry, and therefore is potentially of wider utility. 
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Recently it has been proposed to increase the intensity of the neutral beams used 
to heat the plasma in 2 xIIB and similar mirror devices in order to produce field 
reversal [lo]. As pointed out by Baldwin and Rensink [ll], electric fields induced 
by the buildup of current tend to partially cancel the ion current. It is thus unclear that 
an initially unreversed configuration can become reversed, no matter how much ion 
current is added. Even if the configuration is compressed radially (by the action, e.g,. 
of external coils, an imploding liner, or axial translation in a tank with converging 
metal walls), field reversal is problematic. The Aux linking the ion ring tends to be 
conserved, and collisional diffusion only flattens the profiles. 
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